Sensitivity of sea ice to physical parameterizations in the GISS global climate model

نویسندگان

  • Jiping Liu
  • Gavin A. Schmidt
  • Douglas G. Martinson
  • David Rind
  • Gary Russell
  • Xiaojun Yuan
چکیده

[1] The GISS coupled model is used to investigate the sensitivity of sea ice to each of the following parameterizations: (1) two sea ice dynamics (CF: cavitating fluid; VP: viscousplastic), (2) the specification of oceanic isopycnal mixing coefficients in the Gent and McWillams isopyncal mixing (GM), and (3) the wajsowicz viscosity diffusion (WV). The large-scale sea ice properties are highly sensitive to sea ice dynamics. With the inclusion of resistance to shear stress, VP captures the major observed sea ice drift features and improves the simulations of sea ice concentrations, thickness, and export through Fram Strait relative to CF. GM significantly improves the simulation of vertical temperature distributions in the Southern Ocean, although it leads to a dramatic reduction of Antarctic sea ice cover. The reduced oceanic isopycnal mixing coefficients lead to Arctic sea ice that tends to be less and thinner in almost the entire Arctic except in the North Pacific and Labrador Sea, while Antarctic sea ice that extends more equatorward throughout the circumpolar regions. The responses of sea ice to WV show an enlargement and thickening of sea ice in the Arctic, within the ice packs around the Antarctic and a reduction and thinning of sea ice in the northernWeddell and Ross Seas. On the basis of these experiments, two composite experiments with the best parameterizations are investigated. The atmospheric responses associated with sea ice changes are discussed. While improvements are seen, there are still many unrealistic aspects that will require further improvements to sea ice and ocean components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty in the sensitivity of Arctic sea ice to global warming in a perturbed parameter climate model ensemble

[1] The retreat of Arctic sea ice is a very likely consequence of climate change and part of a key feedback process, which can accelerate global warming. The uncertainty in predictions in the rate of sea ice retreat requires quantification and ultimately reduction via observational constraints. Here we analyse a climate model ensemble with perturbations to parameters in the atmosphere model. We...

متن کامل

Evaluation of aerosol-cloud interaction in the GISS ModelE using ARM observations

[1] Observations from the US Department of Energy’s Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surfa...

متن کامل

Climate sensitivity, sea level and atmospheric carbon dioxide

Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3±1(°)C for a 4 W m(-2) ...

متن کامل

The Relation among Sea Ice, Surface Temperature, and Atmospheric Circulation in Simulations of Future Climate

Observations document substantial 20-40 year trends in the past several decades in the Arctic. Studies show sea ice thickness and extent have declined, air temperature has increased, and the temperature and salinity of the upper ocean have increased (e.g., see Serreze et al., 2000). At the same time, we have seen a weakening of the tropospheric anticyclone over the Beaufort Sea that can be asso...

متن کامل

Quantitative Sensitivity Analysis of Physical Parameterizations for Cases of Deep Convection in the NASA GEOS-5

Parameterization of processes that occur on length scales too small to resolve on a computational grid is a major source of uncertainty in global climate models. This study investigates the relative importance of a number of parameters used in the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model, focusing on cloud, convection, and boundary layer pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003